Measurement of energy landscape roughness of folded and unfolded proteins.

نویسندگان

  • Lilia Milanesi
  • Jonathan P Waltho
  • Christopher A Hunter
  • Daniel J Shaw
  • Godfrey S Beddard
  • Gavin D Reid
  • Sagarika Dev
  • Martin Volk
چکیده

The dynamics of protein conformational changes, from protein folding to smaller changes, such as those involved in ligand binding, are governed by the properties of the conformational energy landscape. Different techniques have been used to follow the motion of a protein over this landscape and thus quantify its properties. However, these techniques often are limited to short timescales and low-energy conformations. Here, we describe a general approach that overcomes these limitations. Starting from a nonnative conformation held by an aromatic disulfide bond, we use time-resolved spectroscopy to observe nonequilibrium backbone dynamics over nine orders of magnitude in time, from picoseconds to milliseconds, after photolysis of the disulfide bond. We find that the reencounter probability of residues that initially are in close contact decreases with time following an unusual power law that persists over the full time range and is independent of the primary sequence. Model simulations show that this power law arises from subdiffusional motion, indicating a wide distribution of trapping times in local minima of the energy landscape, and enable us to quantify the roughness of the energy landscape (4-5 k(B)T). Surprisingly, even under denaturing conditions, the energy landscape remains highly rugged with deep traps (>20 k(B)T) that result from multiple nonnative interactions and are sufficient for trapping on the millisecond timescale. Finally, we suggest that the subdiffusional motion of the protein backbone found here may promote rapid folding of proteins with low contact order by enhancing contact formation between nearby residues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTERACTION OF DNA WITH THE FOLDED AND UNFOLDED HISTONE HI IN THE PRESENCE OF SURFACE ACTIVE AGENTS

Interaction between DNA and histone H, was investigated in the presence and absence of sodium-n-dodecyl sulphate (SDS) and dodecyl trimethylammonium bromide (DTAB) at temperatures of 27 and 37?C, in 2.5 mM phosphate buffer, pH 6.4 by UV spectrophotometry, equilibriumdialysis and titration. The presence of 1.33 mM SDS caused histone H to fold and to further contact DNA. Binding data were use...

متن کامل

Direct measurement of protein energy landscape roughness.

The energy landscape of proteins is thought to have an intricate, corrugated structure. Such roughness should have important consequences on the folding and binding kinetics of proteins, as well as on their equilibrium fluctuations. So far, no direct measurement of protein energy landscape roughness has been made. Here, we combined a recent theory with single-molecule dynamic force spectroscopy...

متن کامل

The physics and bioinformatics of binding and folding-an energy landscape perspective.

It has been recognized in the last few years that unstructured proteins play an important role in biological organisms, often participating in signal transduction, transcriptional regulation, and a variety of other regulatory activities. Various hypotheses have been put forward for the ubiquity of the unfolded state; rapid turnover, faster or more specific binding kinetics, multifunctionality m...

متن کامل

Elucidation of the protein folding landscape by NMR.

NMR is one of the few experimental methods that can provide detailed insights into the structure and dynamics of unfolded and partly folded states of proteins. Mapping the protein folding landscape is of central importance to understanding the mechanism of protein folding. In addition, it is now recognized that many proteins are intrinsically unstructured in their functional states, while partl...

متن کامل

Protein Structure along the Order–Disorder Continuum

Thermal fluctuations cause proteins to adopt an ensemble of conformations wherein the relative stability of the different ensemble members is determined by the topography of the underlying energy landscape. "Folded" proteins have relatively homogeneous ensembles, while "unfolded" proteins have heterogeneous ensembles. Hence, the labels "folded" and "unfolded" represent attempts to provide a qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 48  شماره 

صفحات  -

تاریخ انتشار 2012